If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-4t^2+24t+1
We move all terms to the left:
0-(-4t^2+24t+1)=0
We add all the numbers together, and all the variables
-(-4t^2+24t+1)=0
We get rid of parentheses
4t^2-24t-1=0
a = 4; b = -24; c = -1;
Δ = b2-4ac
Δ = -242-4·4·(-1)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{37}}{2*4}=\frac{24-4\sqrt{37}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{37}}{2*4}=\frac{24+4\sqrt{37}}{8} $
| 0.4(10x+19)=4.5(0.2x+5) | | -2(2-6n)=104 | | 4(-x+5)=-29+3x | | 8x-5x+165=8x+80 | | 17b=b | | (x/12)-x=1460 | | 17b=b=20 | | 8+3p-8p=4p-1 | | (-n/3)-10=0 | | 3b+2b=-25 | | 3x=24-0,5x | | 2,5x+20=-5 | | 3x=24-0,5 | | 11x-9=16x+11 | | 16=v/3-13 | | 3x=24-05x | | y/5-15=23 | | 8^3x-13=64 | | 16=-5+z4 | | (-14d)+(-19d)+13d-(-18d)=14 | | 100-7x6=58 | | 12y+(-11y)+7+(-19y)+20y=9 | | -9-x=4x+1 | | 16=-d=6 | | 4r-3r+9r=(-10) | | 8x-(4^x)=0 | | 8x=4^x | | 2x-24=3x+24-x | | 9x−5=3·(x−2)+13x= | | 447=2/3(Q/3.14x0.1²) | | 2d+8+4d=2(3d+4) | | 3x2−6x+3=0 |